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Abstract 

This paper establishes a number of properties of transformation groups that map 
elementary kinetic equations into new elementary kinetic equations with altered 
rate constants. The chemical significance of the transformations is assessed by 
applying them to systems involving two reacting species. There are then twelve 
one-parameter groups of mappings. Some mappings may be used to study the 
effects of changes in input/output fluxes on concentrations and their compensation 
by changes in other rate constants. A number of mappings transform nonlinear 
kinetics into approximately linear kinetics valid in regions larger than those obtained 
by standard methods. In some cases, the linearization is globally exact. Some 
mappings create iumped concentration variables and may be used to systematically 
reduce the number of manifest concentration variables in nonlinear, as weil as 
linear, kinetic equations. The global mappings may be characterized by the functions 
of rate constants and functions of concentrations that they leave invariant. 
Although they produce large changes in rate constants and concentrations, none 
of these mappings change the topology of concentration phase plots as they map 
a phase plot determined by one set of initial conditions and rate constants into 
that determined by transformed initial conditions and rate constants. Metrieal 
properties of the concentration maps generally depend upon the accuracy with 
wbich the group generators are approximated: systematic methods for their 
improvement are sketched. 
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1. I n t r o d u c t i o n  

This paper is devoted to the assessment of key chemical and mathematical 
properties of the transformations determined in the preceding paper [1], hereafter 
referred to as I. To this end, we begin by considering kinetic systems with two 
constituents, present in concentrations xa and x : .  Using the same notation for rate 
constants used in I, we will thus begin with transformations of the equations 

d x l [ d t  = k w  + kll  Xl + k12x2 + k~l~ Xl Xl + kll2 Xl X 2 + k122 x2 x2 

d x 2 / d t  = k2o + k:l xx + kzz x2 + k211 x1 x1 + k:12 Xl x2 + k222 x2 x 2 . 

(1.1) 

Section 2 applies a particular transformation of I to an exactly solvable pair 
of nonlinear kinetic equations with unstable solutions - a kinetic scheme used by 
Frank [2] as a model demonstrating the possibility of spontaneously developing 
optical activity in an initially achiral solution. Section 3 uses this same transformation 
to exactly linearize Frank's nonlinear rate equations and thereby leads to an indirect 
solution of them. Section 4 then considers a variety of transformations of these same 
rate equations and demonstrates that all the T(a) of I act on Frank's equations to give 
transformed equations which possess unstable solutions. 

Section 5 illustrates the application of the transformations of I to a kinetic 
system in which the linearizing transformation is not exact because the dependence 
of the group generator upon species concentrations has only been approximately 
detennined. Unlike the usual methods of linearization which are accurate to O(x 2), 
the tinearization is accurate to O(x3). Section 6 is concemed with topological 
properties of the mappings in concentration space carried out by the transformations 
T(a) of I. Two systems are defined to have qualitatively similar kinetics if their phase 
trajectories are topologically equivalent. It is shown that all the T(a) of I convert 
phase curves into topologically equivalent phase curves. With this fact in hand,in 
section 7 it is shown how one may use the T(a) to determine lumped concentration 
variables whose evolution is qualitatively similar to that of selected species of interest, 
yet governed by much simpler kinetic schemes. The T(a) are also used to determine 
finite transfonnations of input[output fluxes that compensate for large changes in 
rate constants due to, for example, large temperamre changes. 

In section 8, the group generators established in I are used to determine functions 
of the rate constants that are left invariant by the transformations T(a). This gives 
a global characterization of the mappings x -+ ~ = T(a)x, k -+ -k = T(a)k, all of 
which make large changes in phase curves while leaving the topology of the phase 
curves unchanged. Section 9 determines the many-parameter groups whose trans- 
fonnations leave invariant the topology of the phase curves of a two-species system. 
Section 10 sets forth a method for improving the approximation to the transformed 
concentrations Y = T(a)x one obtains when the generator U of T(a) is approximate. 
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Section 1 1 sets forth an algorithm for improving the approximate generators used 
throughout the paper. 

The rinal section, section 1 2, summarizes the results of this paper and I, and 
indicates directions for further investigation. 

2. Solution of a set of nonlinear kinetic equations by transformation 

To illustrate our transfonnation procedure, we use operators determined in 
I to change the value of the coefficients of the quadratic terms in the equations 

dx~ /d t  = px~ + qxx x2 = k~~ x~ + k m  x~ xz  

d x z / d t  = p x  x + qx~ xz  = k22 xz  + k212 xl  x2 . 
(2.1) 

Frank, and later Hochstim, used these equations wit_h p > 0, q < 0 to model the 
chemical kinetics of a process in whJch an initially racemic mixture of two optical 
isomers with concentrations x l ( t ) ,  x 2 ( t )  can spontaneously become optically 
active [2,3]. Although out purpose here is not a study of optical activity, reference 
to this interpretation will aid in understanding the transformations being used. 

Perusing table 2.2 in I, we see that Tm(6a)wi l l  change k21z to k212 + ~akll, 
and that T2~2(6a)will change k112 to k112 +6ak11.  However, Ul12 and U212 do not 
commute; when a is finite, applying T212(a) to eqs. (2.1) after Tm(a)  gives a different 
result than applying 7'112 (a) after T212 (a). Neither sequence treats the two differential 
equations in the same manner. This leads us to use the generator U = U~12 + U212 
in the operator T(a) = expaU to change k m  and k212. Using table 2.2 of I to evaluate 
the action of exp(6aU) = 1 + 6a(U~~2 + U212) on x and k, we find that all kim 
which vanish in (2.1) do not have their value changed, so we may drop many terms 
from UH2 + U2x2, specializing the generator to 

U = xx xz  3 /3x l  + xl  xz  õ/3x2 + k22 3 / 3 k m  + kll  3/õk2x2 • (2.2) 

Evaluating [V, U] ,  one finds that this Lie generator exactly commutes with the 
evolution operator V for (2.1). If a is the group parameter in the transformation, one 
obtains for the transformed equations: 

d2x /d t  = p21 + (q + ap)21 22 

dN2/dt = PX2 + (q + ap )x l  x2 . 

(2.3a) 

In producing this result, we have considered the concentrations xl to simply }ake on 
new values ~i. On the other hand, we have explicitly indicated that -4 = q + ap. This 
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highlights the effect  of  the transformation in changing the kinetic equation by chang- 
ing rate-constants.  However, the explicit effect  of  the transformation on the species 

concentrat ions is also o f  importance.  One finds by integrating equations (2.13) of  I 
that exp(aU)  acts on x to give, when xl ~ x2 : 

21 = 

2 2 = 

x l  ( x l  - x 2 )  

X 1 -- X 2 exp(aD) ' 

x2 (x l  - x 2 ) e x p ( a D )  

xl - x2 exp(aD) 

(2.3b) 

with 

x~ 4 : x 2  exp(aD) , 

D = xl - x2 = 21 

(2.3c) 

Note that for a given fange of  xl and x2,  we have limited the range available to the 
parameter a so as to ensure that the finite t ransformation is 1:1 within the space of  
real x~, x2 ,  i.e. that - oo < x~, x2 < oo 

If  Xl = x2 ,  then one obtains 

X1 X 2 
21 - - - ,  x2  - - - ,  axl  4: 1, ax2 4: 1. (2.3d) 

1 - axl 1 - -  ax2 

It is not  necessary to solve eqs. (2.3) above for the x to obtain the inverse trans- 

formation:  because o f  the group proper ty ,  the results will be the same as that obtained 

simply by changing a t o - a  and interchanging the barred and unbarred variables. 

Thus, if  21 =~ X 2 : 

xl (21 - 22)  22 (21 - x 2 ) e x p ( - a D )  
xl = , x2 = (2.3e) 

Xl - -  22 e x p ( - a D )  xl - x2 e x p ( - a D )  

If  x I = Æ2, the inverse transformation is 

x l  X2 
x l -  - - ,  x 2 -  (2.3Ü 

1 + a21 1 + a2z  

3. L i n e a r i z a t i o n  o f  t h e  k i n e t i c s  g e n e r a t i n g  s p o n t a n e o u s  o p t i c a l  a c t i v i t y  

Retuming to (2.3a), we note  that if one sets a = - q / p  the coefficient of  the 
quadratic terms in (2.3a) vanishes. This observation enables us to rather easily obtain 
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solutions of the original kinetic equations (2.1) in terms of elementary functions, 
for one may immediately integrate the linear equations obtained when the coefficient 
of the quadratic terms in (2.3a) vanishes. The result is 

Yl = 21(O)exp(pt), x2 = Y2(O)exp(pt).  (3.1) 

(Note that xa, x2 remain finite for all finite times so that the denominators in (2.3e) 
can only vanish as t approaches infinity.) Then, using the inverse transformations, 
one transforms the linearized equations back to the original nonlinear equations and 
thereby transforms (3.1) into their exact solution which, if Xl ( to)  4= x2( to ) ,  is found 
to be 

x l  ( t )  = 

x ~ ( t )  = 

C1 (C, - C2) exp (pt)  

C, - C2exp([q /p l  [C, - C21 exp [pt] )  

C2(C1 - C2 )exp (p t ) exp ( [q /p l  [C, - C21 exp [pt] )  

C1 - C2exp([q/p] [C1 - Czl  exp [p t ] )  

(3.2a) 

where G = xi(0). If xl (to) = x z ( t o ) ,  then (2.3c) implies C1 = C2 = C, and the solu- 
tions of(2.1)  are given by 

C e x p ( p t )  
x l ( t )  = x2 ( t )  = 1 - ( q / p ) C e x p ( p t )  " (3.2b) 

These solutions agree with those obtained analytically by Frank using standard 
methods [2]. 

Note that the values of xl and x2 at t = 0 are 

x l ( 0 )  = 

x 2 ( 0 )  = 

G (G - C2) 

C, - C z e x p ( [ q / p l  [C1 - Cz]) 

C2(C, - C2)exp([q/p]  IC, - C21) 

C1 - C2exp([q/p]  [C1 - C21) 

(3.2c) 

when xl (0) 4 :x2  (0). When the initial concentrations are equal, one has 

C 
x,(O) = x2(O) = 1 - ( q /p )C"  (3.2d) 

Equations (2.1) have equilibrium (i.e. critical) points at (0, 0) and ( - p / q ,  - p / q ) .  
As ( x l ,  x2)  approaches the unstable equilibrium point at ( - p / q ,  - p / q ) ,  the denomi- 
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nators in (3.2b) approach zero and x~ and x2 become infinite. Note, however, that it 
is impossible for any of the solutions to reach these equilibrium values from any other 
concentrations in any finite time. 

It follows immediately from (2.3c) that if, when we start our clock (t  = 0), 
the concentrations C~ and C2 of x~ and x2 are small but not identical, then 

x , ( t )  - x 2 ( t )  = (Ca - C 2 ) e x p ( p t )  . (3.3) 

Thus, if any fluctuation in the concentrations of the D and L isomers leads to a 
momentary difference in these concentrations, this difference may grow exponentially 
with time. As Frank [2] first pointed out, because such fluctuations are to be expected 
on statistical grounds, a reaction system with kinetic equations (2.1), though started 
oft  with equal concentrations of D and L isomers, can lead to a preponderance of  one 
isomer over the other. As will be seen in the following section, the methods we have 
developed enable one to systematically determine all other two-species elementary 
kinetic schemes which lead to the sanae result. However, we do not here provide 
methods for making a corresponding examination of systems where local concentra- 
tion fluctuations and diffusion are involved. The interested reader is referred to 
the paper by Hochstim [3],  who incorporated diffusion in the kinetics (2.1) and 
investigated the fluctuation dynanaics of the system, as is necessary in any realistic 
theory of the spontaneous generation of  optical activity by chemical means. 

4.  D i s t o r t i o n s  o f  k ine t ics  genera t ing  s p o n t a n e o u s  op t ica l  ac t iv i ty  

The chemically significant feature of the kinetics in the previous two sections 
is the instability of solutions in which the concentrations of  D and L isomers are 
equal: if these concentratäons momentarily become unequal at time to, then there- 
after 

xl (t) - x2(t)  = {xl (to) - x2(to)} exp( t  - to )p .  (4.1) 

It is instructive to see what the invariance transformations do to the kinetic equa- 
tions (2.1) and to the time evolution of  this difference. To avoid confusion with 
the transformation of the previous section, we shall in this section write 

~: = T(a)k ,  k = T ( - a ) ' k ,  äc = T(a)x ,  x = T( -a)Tc  . (4.2) 

We first consider the exact invariance transformations Tlo, T~I, T12. Letting 
x = T lo ( - a )~  = (xl - a, x2 ) ,  we find using table 2.2 of I that 

~clO = - a k l l ,  kl2 = -ak112, "k22 = k z 2 -  ak212, (4.3a) 

w hile all other k's are unchanged. Also, 
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x~ - x2 = ( G  - C 2 ) e x p ( p t )  + a. (4.3b) 

Thus, T l o ( - a )  converts the Frank equations into 

~ ~ " 

xl  = - a p  + py:l - aqY2 + qx l  x z ,  xz  = (p  - aq )y2  + qxl  x z  . (4.4) 

It is evident from (4.3b) that these new equations also possess unstable solutions 
in the same sense as do eqs. (3.1). 

Next, let ( x , k )  = Tll  (-a)(.~,~:). Using table 2.2 of I, one finds 

x l  = x l  e a, ~2 = x2 (4.5) 

and 

xl  = Px l  + qx l  x2 ,  x2 = Px2 + e - a q x 1 x 2  • 

Thus, for these equations one has 

xa - x2 = (Ca exp(a) - C2) exp(p t ) .  (4.6) 

Applying T12 ( - a ) ,  one obtains 

xl  - x2 = x l  - x2 - ax2 . (4.7) 

which grows exponentially as t becomes large. The transformed kinetic equations 
are 

-~1 =p-r1 + q ( 1  +a).~ 1~'~ - q(a  + a 2 ) ' 2 ~ ,  ~% =t)Tr2 +q~q~c2 - a q ~ ~ .  (4.8) 

We turn next to the action of transformations that only leave the kinetic 
equations approximately invariant. 

Using table 2.2 of I to determine the action of Tl~a ( - a ) ,  one finds: 

xa - xx  , Y2 = x 2  
1 - axa (4.9) 

{ C1 - C 2 } e x p ( p t )  
x l  - x2 = 1 - a G  exp(pt)  

and that 

kH1 = aklx = ap . (4.10) 
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The corresponding differential equations are 

Xl = pX1 + apY~ + qYq x2 + O ( x 3 )  

52 = p x 2  + q x l x 2  + O ( x  3 ) .  
(4.11) 

r112 (-a) gives 

"~1 : X l  e g X 2 ,  'X2 : X2 , 

- x2 = 1C1 exp(aCz exp(pt)) - C2} exp(pt) 
(4.12) 

and 

kl12 = k112 + ak22 = q + ap . (4.13) 

The transformed differential equations are 

Z 
Xl = Pxl  + (q  + ap)x l  x2 + O ( x  3) 

Y2 = PY2 + qxl x2 + O ( x  3) 
(4.14) 

Finally, T122 ( - a )  yields the transformed solutions 

-~1 = xl - ax t ,  ~c2 = x; ,  k122 = a(2k22 - k11) = a p ,  (4.15) 

so that 

-~1 --  X2 -- (C1 - C2)exp(pt) + aC~ exp(2pt) (4.16) 

depicts the time evolution of concentration differences for the resulting solutions 
of the equation 

xl = PXl + qxl xz  + apY~ + O ( x  3) 

Te2 = PX2 + qxl x2 + O ( x 3 ) .  

(4.17) 

It will be noted that although these various transformations lead to equations 
with little self-evident relationship to the Frank equations, all the solutions have the 
property that they develop exponential growth of the difference between concen- 
trations. By acting successively with the twelve different transformations of table 2.2 
of I, one obtains from the Frank equations a twelve-parameter family of kinetic 
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equations, all of  which possess similarly unstable solutions. In sections 6 and 7, we 
will establish the exact sense in which this property of our transformations is a general 
one. 

5. T r a n s f o r m a t i o n s  o f  L o t k a - V o l t e r r a  sys t ems  

The example of sections 2 and 3 is somewhat misleading because the kinetic 
system possesses no separatrix in the phase plane and because we were able to use 
an exact invariance transformation to linearize the rate equations. In thJs section, we 
investigate the more typical example provided by the rate equations of Lotka and 
Volterra [4,5]. They can always be reduced to the special case [6] 

B1 = p ( x l  - xx x 2 ) ,  :~2 = - q ( x 2  - x l  x z ) ,  (5.1) 

which has critical points at (0,0) and (1, 1). If one rewrites these about the second 
singular point by making the substitution 

Xl = Yl + 1, x2 = Y2 + 1, 

then they become 

.Vl = P ( - Y 2  - Y t Y 2 ) ,  5'2 = - q ( - Y l  - Y x Y 2 ) .  (5.2) 

In this section we will, for simplicity, consider p = q = 1. 
As we wish to allow the kim to vary, we consider (5.1) to be a special case 

of the equations 

Bl = k l l  X1 "l- k l l  2 X I X2, X2 = k22 x2  + k212 Xl x2 » (5.3) 

w i t h  k l l  = 1, k m  = -1 ,  k22 = -1 ,  k~_x2 = 1. 
Similarly, (5.2) is a special case of the equations 

Bx = kl2 Y2 + k m  Yl Yz, Y2 = k21 Yl + k212 Yl Y2, (5.4) 

with kx2 = - 1  = kx12, k21 = 1 = k212. 
Comparing eqs. (5.3) with eqs. (2.1), we find that the generator U of (2.2) is 

the generator of a transformation that will linearize (5.3). However, in this case the 
equations are only approximately invariant under the transformation: Evaluating 
[V, U ] ,  one obtains as the remainder a W (2) term with components 

(wl, w2) = ( - 2 x ~ x 2 , 2 x l  x~ ) .  (5.5) 
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This remainder is o f  higher order in x than that obtained h~ the standard local linear- 
ization which simply neglects tepw~s o f  O(x 2 ). 

We shall henceforth use the term regional to denote an approximation, such as 
this linearization, whose error terms are of order x 3 or greater. 

Equations (5.4) may be linearized in a manner similar to that used for 
eqs. (5.3). Using table 2.2 of I, one finds that to linearize (5.4) it is necessary to make 
use of all the generators quadratic in x. Utilizing the infinitesimal transformations 
as before, one finds that a transformation with generator 

~/'111 "b ~/122 -- U122 - U211 4- U212 -t- U222 (5.6) 

will have the desired effect. Because many of the k's that are zero do not have their 
values altered by the ~jk,  the generator (5.6) may be simplified to 

U ~  " k+{}"21 ."k Y ,  Y2 - y ~ ) a ! a y ,  + (y~  + Y ,  Y2 - y ~ ) a l 3 y 2  

+ ( k , 2  - 2 k 2 ~ ) 3 / Õ k a , 2  + ( k z ,  - 2 k ~ 2 ) a [ 3 k 2 ~ 2  . 

(5.7) 

Evaluating [ V, U] ,  one finds that in the remainder 

V,'I = k,12y31 + k212Y21y2  - (kl12 + 2 k 2 1 2 ) Y l Y  2 + kll2Y 3 

Iu2 = k212 y l  3 -- (2k112 + k2,2)Yl 2 Y2 + k,,2 y ,  Y~ + k2,2 Y2 3 • 

(5.8) 

Acting with exp (aU) on the equations, they are, respectively, converted into 

X 1 = k l l  X1 q- ( k l l  2 -[- c /k22)X 1 X 2 "[" O ( X  3 ) 

X2 = k 2 2 x 2  + (k212 + akll)X1X2 + O ( x  3)  

(5.9) 

and 

Yl = k12372 + (kn2  - 3 a k 2 1 ) Y l Y 2  + O ( Y  3) 

B2 = k21 ~ßl "1" (k212 - 3ak12)Y l  Y2 + O(Y 3)- 
(5.10) 

The effect of  the error terms will be discussed in sections 10 and 11. 
Setting a = - 1  in (5.9) and a = - 1 / 3  in (5.10), one obtains linear equations 

whose solutions are, respectively, 

21 = C1 exp(t) ,  22 = C2 e x p ( - t )  (5.11) 
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and 

Yl = C1 cos(t)  - C2 sin(t) 

Y2 = C2 cos(t)  + C1 s in( t ) ,  
(5.12) 

Using the inverse transformations developed in section 2, one converts (5.11) into 
approximate solutions of  the Lotka-Vol ter ra  equations. One finds, as before, 

x l  ( t )  = _ 
Xl 

21 (Yl - ~2) 

- x2 exp{-a(x l  - x2)} '  

or if xl = X 2 , 

1 + aNx 

x2(t )  = x2(21 - 2 2 ) e x p { - a ( ~ l  - x2)} 

X1 - -  X2 exp{--a(X1 -- X2)} 

(5.13) 

or if xa = x2, 
22 

1 +a22 

where 21 and x2 are given by (5.1 1) in the vicinity of the origin. The range of a must 
be restricted to ensure that the transformations are 1 : 1 on the reals. 

In the vicinity of  (1,1),  one uses the transformation with generator U given 
in (5.7) to obtain the transformed variables. We may take advantage of the fact that 
the commutator of any two of the generators composing this U either vanishes 
or is of  order y3.  As a result, to order ya we may write exp(aU) as a product 
exp(aUm )exp(aUn2) . . . exp (aU222). Proceeding in such a manner, we find 

71  = 

7 2  = 

y ,  + aS~ 

1 +a(Yl +22) +a2(.V~ +Y~) 

Y2 + ay? 
1 + a 071 + Y2 ) + a2 (Y? + Y~) ' 

(5.14) 

with YI,Y2 given as functions of  t by (5.12). Note that Yl and Y2 are single valued 
functions of Yl, Y2 and a for the allowed range of  these variables. Hence, as Yl and 
72 are cyclic functions of t, Yl and Y2 must be cyclic in t. This has the consequence 
that the closed curves which are the phase plane plots of  Yx, Y2 are mapl~ed into 
closed phase curves of  Yl, Y2. 
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l:ig. 5.1. Global approximation to a phase trajectory of the 
Lotka-vol tc r ra  equation. The trajectory B of the L o t k a -  
Volterra equation is approximated by the trajectory A defined 
by (5.14). C is the reference circle defined by (5.12). 

Because the U of (5.7) is only approximate, eqs. (5.14) do not yield exact 
solutions of the rate equations when a is assigned the prescribed value of -113. In 
fig. 5.1, an approximate phase trajectory (A) determined by (5.14) and (5.12) is 
compared with the trajectory (B) obtained by numerical integration of the Lotka-  
Volterra equations. The corresponding trajectory of the linearized equations is plotted 
in the figure as (C). In obtaining these trajectories, the initial point p was used to 
determine p' on the reference circle defined by (5.12). In section 10, a method is 
developed for improving the approximate trajectory in the region of any point of 
interest. 

6. Transformat ion of  phase trajectories: Topological  invariants 

A key feature of any kinetic system is the behaviour ofits phase portrait [6 -8] .  
(We shall use the term phase portrait when we are referring to trajectories in the 
vicinity of singular points in the phase space {x}.) As a result, it is important to 
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investigate the way in which these portraits are affected by the transformations we 
have obtained. To introduce th_is study, we carry out a standard investigation of the 
phase portraits of (1.1). When q 4: 0, the right-hand sides of the equations vanish 
for xl = x2 = 0, and for xl = xlo = - p / q ,  x~ = x20 = - p / q .  Only the first critical 
point persists if q -- 0. In the region of the critical point at the origin, the solutions 
of the equations are 

xl (t) = xl (0) exp(pt),  x2 (t) = x2 (0) exp (pt)  (6.1) 

and the phase portrait consists of trajectories fleeing the origin, an improper node, 
(Of course, on interpreting xl and x2 as species concentrations, one sees that the 
trajectories on which either of  these variables become negative have no direct chemical 
relevance.) The invariance transformations of section 2 merely distort these trajectories 
as they recede from the origin, but none of the transformätions changes the topological 
classification of the portrait. 

We next turn to an investigation of the phase portraits in the region of the 
second critical point at ( - p / q ,  - p / q ) .  Letting y = x - ( - p / q ,  - p / q )  and expressing 
the equations about this second critical point yields 

d y l / d t  = -PY2 + qYl Y2, dy2 /d t  = -PY l  + qYl Y2 • 
(6.2) 

The secular equation of the linear part of this system is 

Det = 0 = X2_ p 2  
- p  

(6.3) 

It will be noted that the roots are independent of q. Since these roots detemaine 
the phase portrait, it is evident that the portrait is independent of q whenever y is 
weil defined, i.e. for q 4: 0. The portrait is that of a saddle point. Applying the trans- 
formations of table 2.2 of I to Yl and Y2, one finds, as in the previous case, that the 
topological classification of the portrait is unchanged. 

The Lotka-Vol terra  system of section 5 has an unstable saddle point at the 
origin, and a stable center at (1,1). Thus, the portrait in the region of the first critical 
point and that in the region of the second critical point are of radically different 
topological type. (Although only the latter is of direct chemical interest, we shall 
for illustrative purposes consider them both.) Applying the tränsformations oftable 2.2 
of I to the variables x in eqs. (5.1) and the variables y in eqs. (5.2), one finds that 
neither phase portrait may be changed into the other or into a portrait of a different 
topological classification. 

It is a difficult task to determine all possible phase portraits for just two elementary 
kinetic equations. One must first locate all stationary points d x l / d t  = 0 = dxz[d t .  



274 C.E. Wulfrnan, H. Rabitz, Global sensitivity analysis: II  

This is equivalent to investigating and classifying all possible intersections of the 
pair of  conics defined by setting the right-hand sides of (1.1) to zero, which if they 
are not identical, may intersect at 4 , 3 , 2 ,  1 or no points. To then investigate the 
action of all the transformations in table 2.2 of I on each phase portrait is a task 
one would like to avoid. In the foUowing paragraphs, we detennine the effects of 
the transformations on file topological properties of all possible phase portraits with- 
out proceeding on acase by case basis, and without confining the system to a phase 
space of two dimensions. 

In the examples of this and previous sections, we have seen transformations 
of kinetic equations that have preserved qualitative features of the solutions of the 
equations even though they may have greafly changed the concentrations and rate 
constants, and hence the equations themselves. All transformations of the equations 
introduced by Frank were found to preserve the instability of the solutions with 
equal concentrations of D and L isomers portrayed in the phase portrait of the un- 
transfomled system. All transformations of the cyclic solutions of the Lotka-Volterra 
equations in the region of their critical point gave rise to cyclic solutions, and al! 
transfonnations of the non-cyclic solutions in the region of their critical point yietded 
non-cyclic solutions. None of the transformations in the examples altered the topo- 
logical classification of a critical point. 

Let us therefore address the question of whether it is true in general that 
our invariance transformations change phase trajectories in such a manner as to 
preserve the topological properties of the trajectories everywhere in the phase space. 

First of all, we ask whether the operators exp(aU) always transform closed 
phase curves into closed phase curves, and open phase curves into open phase curves? 
The answer to this question is yes, for the following reasons. The polynomial form 
of the coefficient functions in the generators U ensures that the coefficients hi (x  ) 
are single valued differentiable, indeed analytic, functions, and this is true eren when 
the polynomials are only approximations to the exact h i. Now, at each point in the 
phase space the infinitesimal shift in x , k  brought about by an infinitesimal trans- 
fomaation with parameter 8a is given by 8a Ux, 8a Uk. Thus, at each point in phase 
space ( - ~  < x i < o~ for all t), out infinitesimal transformations define a unique 
shift of  the point, that is to say, they are local diffeomorphisms. We have not allowed 
finite transformations that shift xi outside this same range. Since the finite trans- 
formations T(a) are compounded of a succession of infinitesimal transformations 
T(Sa) such that a = fSa,  for each value of a they also determine unique motions of 
each point in x, k, t space as long as x, k, t remain real. Thus, first of all, for all a 
withän the allowed range, the transformations carried out by the operators exp(aU), 
in addition to being unique and having a unique inverse, vary smoothly from point 
to point and carry contiguous regions in x, k, t space into contiguous regions, and 
discontiguous regions into discontiguous regions - that it to say, they are local 
diffeomorphisms of the space of x,  k, t [7]. Second, because we do not allow values 
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of the group parameter which would transform any variable outside the reals, the 
transformafions are global diffeomorphisms of the space of real x,  k, t. In addition, 
the transformations are time independent so that they are diffeomorphisms of x, k 
space. Finally, the transformations are such that as x varies with t, k does not vary. 
It follows from this that as t progresses and a phase trajectory and its transformed 
image develop (a being held fixed), if it should happen that the phase point returns 
to its initial position, then its transformed image will also return to its corresponding 
initial position. Thus, a closed phase curve is mapped into a closed phase curve. In a 
similar way, one argues that because the transformations are t-independent diffeo- 
morphisms of x ,k ,  t space, they carry discontiguous regions of  phase space into 
discontiguous regions, and hence transform open phase curves into open phase curves. 

It is evident from this discussion that our transformations allow us to deter- 
mine changes in rate constants that will leave an initially oscillatory reaction oscillatory 
and an initially non-oscfllatory reaction non-oscillatory. Any transformation con» 
pounded of  transformations exp(aU'), each of whose generators are of the form 

U' = ~-~«m (k)Um , (6.4) 

will have this property when acting on the xi if the Um are those determined in 
section 2, and the Cm are smooth functions of  k. 

In the usual topological classification of phase portraits and phase curves, 
the direction of  motion as t increases is also a topological invariant. Hence, we next 
investigate whether any of out changes in rate constants invert the direction of motion 
along a phase curve. 

Inspecting table 2.2 of I, one finds that none of its transformations can have 
such an effect. The underlying reason for this is perhaps most clearly seen with the 
aid of fig. 6.1, which purports to depict a solution curve in xl ,  x2, t space and its 
projections onto xl ,  x2 phase space, together with another curve in this phase space. 
Suppose that at times h and t2 the points P1 and Pa are marked on a trajectory 
of  growing concentrations. Suppose that for a given value a' of the group parameter 
it were to happen that exp(aU) were to map P1 into PI - and that for the same 
value of  the group parameter, P2 is carried into Pf,  a point where 21 and 22 have 
smaller values than at P~. The arrows are drawn in to indicate how, as one increases 
the group parameter from 0 to a', the transformed points move away from the original 
trajectory. It will be noted that these lines cross at some intermediate value of a. 
However, if this were to happen, then for larger values of a the transfomlation would 
have to carry the point of  crossing into both PI and P;  - and the inverse transfonna- 
tion would have to carry the point to both P1 and Pa. Because our generators U 
have single valued functions for their coefficients, the infinitesimal transformations 
are everywhere unique and all this is impossible. In short, it is impossible to 6onvert 
the first phase trajectory into the second using any of our T(a). 
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]- 

(Xff) 

An I~oss ible  ~ppin 9 

Fig. 6.1. An impossible mapping. Two ctLrves x(t) can not be 
mapped into one another by any of the transformations considered 
in this paper if one depicts concentrations that increase with time 
and the other depicts concentrations that decrease with time at 
the same time. 

The argument just given evidently falls if the phase space is more than two 
dimensional, for then the lines P1 P~ and P2 P; need not intersect. In such cases, 
we may consider an initial phase trajectory which develops in one direction as t 
increases, and a nearby phase trajectory obtained from the first by a transformation 
with operator T(a) - a trajectory which by hypothesis evolves in the opposite direction. 
If two such curves exist we can, from arguments of continuity in the group para- 
meter a, conclude that between them lie two similar curves that are connected by 
an infinitesimal transfomlation T(6a) and that between these two curves lies a curve 
along which points do not move with t. Thus, along this intermediate curve all xi 
vanish. We now prove that in the region of this intermediate curve, T cannot change 
any of the rates xi. The effect upon xi of the infinitesimal transformation with 
generator U is to convert x i . t o  ~i = xi + 6a hi(x ). This induces a transformation 

of dxi[dt  to 

d X "  _ 

dXi/dt = -;2(xi + 6a hi(x)) = Jc i + 6aL2¢iöhi[3x  ] . 
t l  l 

(6.s) 

As xi and all the other 2j vanish on the intermediate curve, we see that in its infinitesimal 
neighbourhood T cannot change any of  the ~'s and so cannot change the direction 
of motion along any trajectory. It follows from continuity in the group parameter a 
that T is unable to transform any trajectory into a trajectory developing oppositely 
in time. 
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The observations so fär made in this section may be subsumed in the general 
observafion that because our transformations are, for each allowed value of the group 
parameter a, diffeomorphisms of the space of x, k that keep dk/dt zero, they trans- 
form phase trajectofies into topologically equivalent phase trajectofies [7]. 

It is important to note that because even out approximate invariance trans- 
formations are local and global diffeomorphisms, all the above statements hold true 
eren for them. Of course, when one uses approximate invafiance transformafions, 
one converts exact solutions into approximate solutions and hence, usually, converts 
exact phase trajectofies of one kinetic system into approximate phase trajectofies 
of another. Nevertheless, increasing the accuracy of the approximation by increasing 
the number of terms in the power seiles approximation to the hi(x ) will not alter 
the topology of  the target curve, which is completely determined by the topology 
of  the untransformed solution curve. Thus, for all the transformations we allow, the 
evolution of  the original system and the evolution of  the transformed systems are 
qualitatively similar in a well-defined sense: their phase curves are topologically 
indistinguishable. The topology of the phase curves is, in the standard sense which 
includes the direction of mofion, an invariant of our transformations. 

To sum up our observafions to this point: the methodology and concepfions 
we have descfibed enable one to establish well-defined qualitative relations, as well 
as quantitafive relations, between the behaviour of kinefic systems with different 
rate constants. Because one may transform many rate constants to zero, the con- 
cepfions are also applicable to studies relating the global behaviour of systems with 
complex kinetics to the behaviour of systems with simpler kinetics - and vice versa. 

7. L u m p i n g  a n d  f lux  c o n t r o l  

Both in the analysis and in the utilization of kinetic studies of complex 
reacting systems, one often tries to simplify the kinetic scheme by 'lumping' a number 
of reactions into one, thus submerging a part of  the detailed elementary kinetics. 
For this goal, it is necessary that the reactions retained in the kinetic scheme proceed 
at least qualitatively, as they would if the submerged reacfions were taken into account. 
Because we are assured that our transformafions do not change the qualitative 
behaviour of a kinefic system, it is worthwhile to determine whether they can be 
used to determine lumpings. Sometimes a lumping is only possible because the inifial 
concentrations satisfy some special relationshJp, and sometimes it is only possible 
because some kinefic coefficients are confined to some special range of values. Whfle 
the methods developed in this arficle can be of help in studying both these situafions, 
here we wish only to deal with the use of the methods in the global analysis of  kinefic 
systems. That is to say, we are here concerned only with the consequences of large 
changes in kinefic coefficients and with consequences that are independent 'of initial 
concentrafions. 
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To exemplify our approach to lumping, we begin by considefing the inverse 
process, that of  sophästicating one member of a set of rate equafions - an equation 
that happens to involve only one species. Consider the general elementary kinetic 
scheine involving only one species: 

B1 = glo + gH xa + g111 x2 " (7.1) 

We may suppose that while this reaction is proceeding, another reaction involving 
x2 is also proceeding independently. Now the concentration xl necessarily evolves 
in a non-oscillatory manner. Acting on (7.1) with any of the twelve transformations 
T(a) of table 2.2 of I will give a one-parameter family of two-component kinetic 
systems in which 21 's evolution is also non-oscillatory. Acting with each of the twelve 
transformations in succession will give a twelve-parameter family of such kinetic 
systems. 

The lumped variable 21 resulting from these transformations will in general 
be a complicated function of xl and the other concentrations, but as the group 
parameters become smaller and smaller, it will come closer and closer to being xl .  
Even though 21 makes large excursions and the kinetic coefficients may be greatly 
altered, the evolution of Xl for all members of this twelve-parameter family of 
reactions is globally, i.e. topologically, equivalent to that of the lumped system (7.1). 
All ttBs is to say that ~~ will behave qualitatively as though it were xi. 

Consider now the process involved in eliminating a concentration variable 
from a kinetic equation using transfonnations xa, x2 -~ xa, x2.  It might appear 
at first sight that with a twelve-parameter family of lumping transformations available, 
one could lump away just about any variable in a reaction without changing the 
topology of the phase trajectories. In this connection, an example involving the 
lumping of three species into two may be revealing. Consider the reactions 

k, 
A + A  = B 

k-I 
(7.2) 

k2 
B + B  = C 

k-2 

and suppose that A is being supplied at rate ko while C is being supplied at rate k3. 
Let us try to transform away the intermediate species in the final reaction. Assigning 
the index i antilexically, the associated kinetic equations are 

973 = ko + 2k_1 x2 - kl x3x3 = k3o + k32 xz + k333x3 x3 

)ra = - k - 1  x z  - 2 k - 2 x a  + kl x 3 x 3  - 2 k z x 2  x2 

= kz2 x2 + kzax~ + k z33x3x3  + k222 x z x 2  (7.3) 

2Cl = k3 - k_ z x l  + k z x 2 x z  = klo + k H x l  + k l z 2 x 2 x z  . 
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We wish to carry out a transformation x ~ ~,  k -+ k which will eliminate 22 from 
the last reaction. Perusing table 2.1 of  I and taking into account the fact that a number 
of  k's vanish in the intermediate and final reactions, we see that U12 is the only 
generator available for this purpose. Table 2.2 then indicates that 

Bxz2 = k m  + ak222, -k12 = a(k22 - k11) - a2k21 • (7.4) 

Thus, on setting a = - k m / k 2 z 2  = k z [ - k 2  = - 1  we can transform k m  to zero 
- but we will also, in general, create a nonzero k12- Again perusing table 2.1 of I, 
we find that we can not find another transformation that will eliminate the unwanted 
kx2. It foUows that we can only attain our desired end if it should happen that the 
value of  a which makes k122 vanish also makes k12 vanish. This will happen only if 

(k122/k222)k21 + k22 - kH = - ( k _  2 + k_ x) = 0 . (7.5) 

As untransformed rate constants can not be negative, it is evident (7.5) can only be 
satisfied if we cän replace the k's by some negative k 's  by means of some further 
transformation. Perusing tables 2.1 and 2.2 of I, one finds that a candidate for such 
a transformation is provided by Tlll(b).  It acts on kll to give kl l  + 2bklo so that 
the term in (7.5) which must vanish becomes - ( k _  2 + k 1 + 2bk3) .  Thus, by setting 
b = - ( k  I + k _ l ) [ 2 k 3 ,  the lumping becomes possible. The only other effect of 
T~~~(b) on the final reaction is to convert x~ to x~/(1 + bXl) .  Applying Tlll after 
Tlz, the lumped concentration variable will be x l  = (x l  + ax2)/(1  + b{xl  + ax2}) .  
The other concentrations x2 and x3 are unaffected. The kinetics of the final reaction 
will become 

X1 = klo "b kll x1 + kll l  x1 x1 

-kll = k l l  + 2bklo + ak21, k111 = akl l  + a2k12 + bkzl  . 

(7.6) 

Lumped concentration variables are also of use in another setting, in which 
one wishes the lumped variables to behave qualitatively like the original concentra- 
tions. It is a common experience that hëat produced in the course of a chemical 
reaction may affect reaction rates (and, as a result, product composition) by changing 
unimolecular rate constants kii and bimolecular rate cons tan t s  ki] k. One commonly 
controls such reactions by adjusting cooling rates and by adjusting concentrations 
and rates of  supply of  reagents. For reactions involving two species, the extent to 
which time-independent reaction fluxes and concentration changes may be so used 
can be determined with the aid of table 2.1 of I. Perusing the table, one sees that 
only the generators Uio and Uij have nonzero values of glo and g2o. Thus, only 
transformations using them can adjust the fluxes klo and k2o. The most general 
allowed generator available for such purposes is a linear combination of these six 
generators of  the form 
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U = Z e n ,  ( k ) U  m . (7.7) 

Using table 2.1 of I one finds that an infinitesimal transformation with this generator 
has the following effect on the flux klo and the rate constants klu: 

Õklo = 6a{ -cxok l l  + cll km + ca2k2o - c2ok12} 

6kll = 6 a l - 2 c : o k l : l  + c12k21 - c2ok:12 - c21k:2} 

6k12 

6k111 

= 6 a { - c : o k 1 1 2  + cll k12 ÷ c:2(k22 - klx)- 2 c 2 o k m  - c22k12} 

= 6a{ - cH  k m  + c12k2H - c2:k:21} 

(7.8) 

6 k m  = 6a{c:z(k212 - 2 k m )  - 2c21 klx2 - c 2 2 k m }  

6 k m  = 6alcl l  k m  + c12(k222 - k m )  - 2c22 k122} • 

The associated changes in concentrations are 

6X 1 = 6a{Clo  '1- Cll  X 1 -t- C12 X2} 

6X 2 = 60 {(720 "{- C21 X 1 "~ C22 X2} , 

(7.9) 

A similar set of relations can be written for the flux k20 and rate constants k2u. To 
negate the effects of infinitesimal temperature-driven changes in the ten unimolecular 
and bimolecular rate constants, we may try to choose the six constants c:u and c2~ 
so that all 6k's except 6k:o and 6k20 vanish. If such c's cän be found, then they will 
determine associated shifts in fluxes 6k10 and 5k20 and concentrations 6x: and 
6x2. Under these circumstances, the transformed kinetic equations will read 

X1 = klo + k:~ 2: + k:2 x2 + kl:: x~ xl + ka~2 x: x2 + kn2 xz x2 

x2 = -k20 + k21 x1 + kzz 2z + k2~~ Xa x1 + k2~2 x: x2 + k222 x2 x2 . 
(7.10) 

Here, the k's without overbars have the value taken on at the original ambient tem- 
perature, the change in the actual temperature-dependent k's having been absorbed 
in the indicated changes in xl,  x2, klo, k2o indicated by overbars. When the ~i are 
expressed in terms of the untransformed variables, the ~i are seen to be lumped 
concentration variables if c12, c21, respectively, are nonzero. Otherwise, x:,  x2 are 
simply altered values of xl,  x2. 

Cleafly, all this will only be possible in special cases - cases which may be 
determined using this linear analysis. When the linear analysis using infinitesimal 
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transformations establishes that compensation is possible, the corresponding finite 
transformations may be used to determine the shifts in fluxes and concentrations 
required to compensate for finite temperature-driven shifts in rate constants. 

When this is possible, eqs. (7.10) state that the reaction with altered fluxes 
and concentration variables will proceed with the same unimolecular and bimolecular 
rate constants as did the original reaction at ambient temperature. If c12 and c21 are 
zero, one will have been able to accomplish this simply by changing fluxes and real 
world concentrations. 

We also call attention to the fact that in the general case the determination 
of  lumpings that will eliminate intermediates from consideration also begins with 
the determination of  an appropriate infinitesimal transformation by specifying an 
appropriate linear combination of base generators. Once this has been determined 
- by solving a set of linear equations - one can determine the corresponding finite 
transformations. In proceeding from the infinitesimal to the finite transformations 
in these lumping analyses that fix a generator U, one may directly use the operator 
exp(aU) or a succession of different T's, each involving one of the base generators 
in U and a particular choice of parameter that may be determined with the aid of 
table 2.2 of I or an extension of it that deals with a larger number of variables x i 
and k u. 

8. Invar i an t  f u n c t i o n s  o f  k ine t i c  coe f f i c i en t s  

As the parameter a varies, the operators exp(aU) change the values of the 
kinetic coefficients k and the representative points in k space move along a definite 
path, as indicated in fig. 8.1 for a three-dimensional k space. The functional form 
of  these paths is most usefully characterized by stating the functions F(k) that are 
left invariant as the point moves along the path. Setting each F(k) equal to a constant 
defines a surface in the space of kinetic coefficients, and the intersection of all these 
surfaces defines a line in this space - a path specified by the transformation. The 
constant value to be assigned to each F(k) is detemlined by the initial values of the 
k's. In the figure, it is supposed that both curves are determined by the same two 
generators U so that only the differing values of  the constants C distinguishes them. 

We now mm to the problem of determining the functions F. Let F(k) be a 
function left invariant by the transformations exp(aU). Then, expanding the exponen- 
tial, one has 

{1 + aU  + (aU) = /2 + + } F = F. (8.1) 

The necessary and sufficient condition that this holds for all values of a is 

UF = O. (8 .2 )  
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B Fl(k) = C I 

FiCk~ : c l B  
FIT (k) : C'IT / k2 

k 1 

Fig. 8,1. Invariant surfaces and curves defined by invariant 
functions of rate constants. The functions F I and FII, 
when set equal to the constants C, hefe define two- 
dimensional surfaces in a three-dimensional space of rate 
coefficients. These surfaces intersect in a line. Changing 
the values of the constants C changes the surfaces and 
their intersection. 

For a given U, this is a first-order partial differential equation for F. By the usual 
theory of  such equations, it is equivalent to a set of  first-order ordinary differential 
equations [9] 

(~klo (~k20 (~k222 
- . . .  - ( 8 . 3 )  

glo g20 g222 

Consider, for example, the case of  the transformation with generator 

Un = x10[~Xl + klo ~/Õklo + k12 ~/0k12 - k n l  0/0k111 

- k~22 a/ak~22 - k2, a/ak2~ - 2k2n a/ak2n - k2~2 a/ak2~2. 
(8.4) 

Here, the equations (8.3) have as solutions a basic set of  invariant functions 

klo~kl2, kn ,  kn1"k12, kn2, k122/k12 

k20, k21"k12, k22, k211"k~2, k212"k12, k222 . 

( 8 . s )  

Any function of  these base functions is, of  course, also an invafiant function. 
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The reader will note on inspecting table 2.2 of I that the invariant functions 
(8.5) can also be constructed by eliminating the group parameter a from the finite 
transformations. If it should happen that k12 were zero, one would avoid introducing 
k12 by combining the transformed k's in a different manner than indicated in (8.5). 

In table 8.1, we list a basis of  independent functions F(k) left invariant by 
each of the generators in table 2.1 of  I. Any two sets of  values of the kinetic co- 
efficients that give the same values for one or more of these sets of functions will 
yield reaction systems whose global behaviour is qualitatively the same in the sense 
defined in section 7. A set of eleven such basis functions F(k) may be similafly 
determined for any linear combination of generators one chooses. 

As an example of the utilization of these functions, we consider the functions 
determined by the translation operator Tlo(-a)T2o(-b) = T(-a, -b). This operator 
acts on (xl,  x2) to give (21 ,  2 2 )  = (X 1 -- a ,  X 2 - -  b). At the same time, it shifts a 
number of rate constants kiu to kiu. T(-a, -b) thereby determines homeomorphisms 
of x, k space that convert a given set of initial concentration values (x °, x2 °) (and 
running values (xl,x2)), and a given rate equation • = r(x,k) into a new set of 
concentrations obeying a new set of  rate equations. For each value of a, b, the new 

r 2 ° , 2  °~ evolve along a phase trajectory (21(t),22(t)) topo- initial concentrations t 1 2J 
logically equivalent to that of  the initial phase trajectory (xl(t),x2(t)). Thus, by 
acting on a system with initial concentrations evolving along a phase trajectory of 
given topology, the transformation converts it into a two-parameter family of initial 
concentrations and phase trajectories of identical topology hut belonging to different 
rate equations. (Any of the values (Xl, x2) on the initial trajectory can of course be 
considered initial concentrations.) Inserting the initial values of the ku into the func- 
tions of table 8.1, one obtains initial values of the invariant functions. Setting the 
corresponding functions of the ku equal to these initial values, one obtains the equa- 
tions that determine the relations among the ku that must subsist to ensure that the 
altered kinetic equations should have topologically identical trajectories originating 
from the transformed concentrations. 

9. G r o u p  p rope r t i e s  

So far, we have not dealt with important questions conceming the totality of 
transformations in table 2.2 of I. For example, are the different one-parameter groups 
of transformations in the table all subgr0ups of a single many-parameter group? Are 
there other time-independent transformations with generators quadratic in x, which 
will also leave the kinetic equations (2.1) invariant? 

The first of  these quesüons is also the logically prior one, because if the trans- 
formations do not together comprise a group, it can be shown that they give rise to 
further transformations which leave eqs. (1.1) invariant. Now, for the transformations 
to be those of a many-parameter group it is necessary and sufficient that their 
generators close under commutation: 



286 C.E. Wulfman, Il. Rabitz ,  Global sensitivity analysis: H 

[U i, O) ] = 7,ei~ Uk . (9.1) 

In the previous paper  I, we established that  the commuta t i on  relations o f  invariance 

generators which leave the k subspace invariant are the same as the commuta t i on  
relations o f  the full generators wtüch act in the space o f / ¢  and x .  (That  is to say, the 

structure constants  ci~ are the same in bo th  instances.) Because we have chosen the 

functions h i (x  ) to be independent  o f  the k's, it is also true that  the commuta t i on  

relations of  that  por t ion of  the generators which acts on the x ' s  - the h • V x - are also 

the same as the commuta t i on  relations of  the full generators.  This enables us to use 

Lie's classification of  all the t ransformat ion groups of  the plane (here the plane o f  

x~, x z )  to detennine ~1 possible Lie groups obtainable f rom the generators in table 2.1 

of  I. These are set for th in table 9.1. 

Table 9.1 

U's that generate many-parameter Lie groups 

I. U~o, U2o, Utl, U~:, U21, U:2, UI~ 1 + Um, U:22 + U~~ 2 (projective group of the plane [201 ) 

II. (i) U,o, L~o , U , ,  U2~, U22, U2,~, U, ,  + U  m 
(ii) U~o,U,o, U22, U,~,U,I,U,22, U222+U,,2 

III. (i) U,o, U2o, U~~ + U22, U21, U2~t, U~,~ + 2U2~ 2 
(ii) U2o, U~o, U:2+Ut~ , U~a , U~22, U222+2UIt2 

IV. (i) Uto, U,~,U,2, Ut~:,U2o, U22 
(ii) U~o, u~~, u~, u~,~, u,o, u~, 

v. (i) U,o,U~~,u~~~,U~o,U~:,2u,,+u,~~ 
(il) U2o , U2~ , U:t~, Uto , U11 , 2U22 + U2~ ~ 

vi. (i) u,o,c~o,u, ,u2~,u~,u~ù 
(w) u.,C~o,U~~,u,, u,~,u,~~ 

VII. Uto, U o, U**, Ut2, U21, U22 (general linear group of the plane [20]) 

VIII. Ulo , U2o , U;~, U2, U , t -  5~~ (special linear group of the plane [20]) 

IX. ( i )  U,o, U,,, U~2, U,22 + U,,2 
(ii) U2o, U~=, U,,, U~,, + U m 

X. (i) U,o,2U,, +U~~, U,, +U m 
(ii) U~o, 2U~: + U~, U~~~ + U~,2 

XI. (i) U,o, UI, ,U,: ,U,~ ~ 
(ii) U:o , U~2 , U2, , U2, 

XII. (i) U,o, U12, U,22 
ui) U~o, u~,, u~,, 

XIII. (i) U,o, U,,, U,,, 
(il) U2o , U~:, U::2 (group of the line [20]) 

Note: Many of the groups whose generators are listed above contain subgroups 
not listed, e.g. in XIII (i), U~o and U~~ generate a two-parameter group. 
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It will be noted that no one of the many-parameter groups in this table contains 
all the generators in table 2.1 of I. The largest group is the first listed, a ten-parameter 
group that is a form of the projective group of the plane. If one takes the commutators 
of the generators in this group with the remaining linearly independent generators 
available from table 2.1 of I, then one obtains new generators not in table 2.1. How- 
ever, in the generators the h i a r e  of third degree in x. No further linearly independent 
generators exist in which the h are ofless than third degree and g is nonzero. 

10. Errors in finite t r a n s f o r m a t i o n s  resul t ing  f r o m  use  o f  a p p r o x i m a t e  
gene ra to r s  

The generators used in section 5 to approximately linearize the Lotka-Volterra  
equations are typical generators in the sense that they are generators oftransformations 
that only approximately leave invariant a set of kinetic equations. Expanding the 
finite transformation operator exp(aU) in powers of the group parameter a, one sees 
that as a consequence one would have to expect that the effect of  exp(aU) on the 
differential equation, its solutions, and functions of its solutions, would only be 
accurate through O(ax2). In particular, eq. (5.2) is linearized only through O(y2).  
However, one is interested in having the transformation exp(aU) act at every point 
on a given solution curve - not just near the origin. 

In sections 3 and 5, we have used critical points in phase space as origins 
of coordinates. One can just as well choose a point on or near a trajectory as the 
origin and thereby ensure that in the region of such a point, the error in the coefficients 
hi(x ) in U is minimal. This allows one to determine trajectories in the region of any 
point P that are accurate through second order in displacements from P. If, using P as 
origin, one proceeds as in sections 3, 5 and transforms the system of interest into a 
system with known analytic solutions, one can use the inverse transformation to 
obtain analytic approximations to trajectories in the region of P. From a more general 
standpoint, expansions about P will allow accurate investigations of solution behaviour 
near P when one varies k's. 

To illustrate the method, we use it to improve the approximate Lotka-Volterra  
trajectory obtained in section 5. There, the analytic reference solution was obtained 
by transforming away the quadratic terms in the rate equations using an operator 
exp(aU). Since the group generators are accurate to 0 ( 9 ) ,  this gave a set of rate 
equations linear to 0 ( 9 ) ,  the origin being the singular point. The linear equations 
were solved, and their solution transformed into an approximate solution of the 
Lotka-Vol terra  equation (5.3) by action of e x p ( - a U ) .  

To improve the solutions obtained in th.is way, one may proceed as follows: 

(i) Determine the general form of the generator of the transformation that 
linearizes the nonlinear equations in the region of a point P on the actual 
trajectory of interest - e.g. the point whose coordinates are initial 
values of the species concentrations. 
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(ii) Determine the finite transformation that carries out the linearization. 

(iii) Obtain and solve the linearized equations. 

(iv) Transform the solution of the lineafized equation into the required 
solution of the nonlinear equation. 

Let the new center of expansion of (5.2) be at a point P with coordinates 
(a,/3) and define 

ù '~=Yl  - a ,  ),2 B=y2- /~  (10.la) 

and 

T l o ( - a ,  -/3) = e x p ( - a U m  -/302o), y«e  = T m ( - a  -Ö)Y = (Y~,Y2B) • (10.1b) 

The action of T m ( - a ,  -fl) on eqs. (5.2) gives 

dYC(/dt = kro ß + «1, .~'1 + kp? 3,~ + kl~ y~)'~ (10.2a) 

= kC~~v~ d) ' f /« t  k~o B + k~(»,~ + = ~ 2  + k~~ y~y~ , 

where 

kro ß = oßkm + flklz, 

kl? = k12 + o&m,  

k l ?  = ~ k l l 2  , 

kl~ = kl12 , 

k~oß = c47k212 + «k21, k~l B = k21 +/~k212 , 

k ~ ?  = c~k21 , k~l~2 = k212 . 

We seek an invariance generator 

U : h(yC~~). V vC~~ + g" Vk~t 3 

(lO.2b) 

and a value of a such that exp(aU) acts on y~ß and k c~~ to transform the kl~ and 
k~~ terms to zero, leaving only terms of O((yC*t~)°), O(y~~), and O((yat3) 3) and 
higher. One may suppose that such a generator is of the form Ec u Uu. We first deter- 
mine the c u that would be required if the nonlinearity were infinitesimal. To do this, 
we multiply kl~~ and k~~ß2 by an infintesimal e and determine the cu by requiring 
that (1 + 6aU) annihilate ek~~ and ek~~2 while leaving klO, v~~ 7.«~ ,~1z2, ,~2n and k~~ 
all zero. 

( 1 0 . 3 )  
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Inspecting table 2.1 of  I, one finds that in the sum one need only consider 
the six generators Ui#' that generate nonlinear transformations of the concentrations. 
Considered as functions of y~,yf,  all these generators vanish at y~ = 0 = y2 B. It 
follows that y ~ ,  y~ also vanish at the origin, which is thus an invariant point of the 
transformation. Table 2.2 of I shows the transformed rate constants kl0 and ki/ 
depend linearly on both group parameters and rate constants. Consequently, exp(U) 
has the same effect on the koi and kq as does (1 + U), so that setting e = 8a allows 
one to use (1 + U) to obtain the same linearized equation as would be obtained 
using exp(U). It cannot, however, be concluded that (1 + U) generally acts on the 
concentration variables to give transformed variables that are good approximations 
to those obtained by the acüon of exp(U). 

at3 For (1 + flaU) to kill ekq/, the c» must satisfy the following set of linear 
equafions: 

0 = ~a(c111 k~? "{- Cll 2 k~l ~ -- C211 k l ?  

~t3 = - ek , ,2  6a(cm2k~2 B + cn2k2~2 ~ + «1222k~( -«212k~? 

O= 6a( Cll2k~? + c122(2k~~-  

o -- 5 a ( - « , , ,  k~~ + c211(2k~~- k~ß)+ c212 k~~ 

- 6 k  ~1~2 = ~a( - Cl12 k~l ~ "1- C211 2klff + «212kC~~1 + «2222k~~) 

O= 6a( - «,~~ k~f  q- C212 ]V'~~ -t- C222 k22 ) 

(10.4) 

To further particularize the discussion, we approximate a trajectory of the 
Lotka-Vol ter ra  equations (5.1) through the point (0 .922 , -0 .491) .  Translating 
the ofigin to this point, the Lotka-Vol ter ra  equations become 

B~ = 0.9437 + 0.491 y~ - 1.922 yf  - y~y~ 

.~g = 0.4693 + 0 .509yP + 0.922y~ + y ~ y f .  
(10.5) 

To linearize these, we first use (10.4) to determine the parameters aqk in the linear- 
izing operator 1 + Eaii k Uqk, and find them to be 

a m  = -0 .3289 ,  alx2 = -0 .1067 ,  a122 = 0.4829 

a2n = 0.1123, a m  = -0 .3422 ,  a222 = - 0 . 4 4 6 7 .  

(10.6) 
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The approximately linearized equations, obtained using 1 + Eai/• Uiik, are 

y~ = 0.9437 + 0.1170y~ - 1.05112:0 + O(y 3) 

~2 B= 0 . 4 6 9 3 + 0 . 7 1 6 1 y ~ + 0 . 1 6 1 5 ~ ~  + O ( y 3 ) .  
(10.7) 

If one wfites the f inte  transformation T in the form 

T = T222 [T212 [T211 [T122 [ T m  [Tlll ] ] ]] ]] , (10.8) 

one finds that T linearizes (10.5), yielding (10.7), when the group parameters are 

a,i: = -0.0123,  a1:2 = -0 .7473,  a:22 = 1.6794 

4211 = 0.2792, a21z = - 0 . 6 8 1 7 ,  a22z = - 0 . 1 2 4 8 .  
(10.9) 

There are several ways to obtain these values. We calculated them by taking advantage 
of the fact that when the kio vanish, T acts linearly on the ki/ / ,  and so begän with 
initial approximations to the a s which we obtained by solving (10.4). We then simul- 
taneously increased klo and k2o in five stages. At each stage, the a's that zeroed the 
kl//, to 1 part in 10 4 were determined by Newton's method. This required two steps 
at each stage, and yielded rinal values of the a's that zero the kl~/, to within 1 part 
in 10 s . 

The solution of (10.7) passing through yc~= 0 = ~t3 at t = 0 obtained on 
neglecting terms O(y  3) is 

y a = -0.8349 + 0.8349 cos(0.8673 t) 

+ 0.9549 sin(0.8673 t) exp(O.1384 t) 

B = 0.8049 + ( -0 .8049  cos(0.8673 t) 
(10.10) 

+ 0.6695 sin(0.8673 t) exp(0.1384 t). 

Acting on ( y ~ ,  .~2B), the inverse transformation T -1 gives v a (. 1, Y~). In fig. 10.1, the 
resulting phase trajectory is compared with the exact trajectory and with the trajectory 
generated by dropping the quadratic terms in (10.5), and then solving the resulting 
linear equation. The errors in the trajectory obtained by transformation arise via 
third-order errors in the linearized equations. The errors in the other trajectory arise 
from second-order errors in the linearized equations. 

It should be noted that the phase trajectory of (5.2) passing through the 
point P with coordinates (Yl, Y2) = (0 .922 , -0 .491)  is a closed curve. However, 
when the translated equation (10.5) is linearized by dropping its bimolecular terms, 
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Fig. 10.1. Regional approximation to a phase trajectory of the Lotka-  
Volterra equation. Curve a is an exact trajectory of (10.5). Curve b is its 
regional approximation defined by (10.8, 10.9, 10.10). Curve c is the 
approximation to curve a determined by the usual linearization of (10.5 ). 

all its phase curves are open ones. The linearization is not an invariant one in out 
generalized sense (cf. I), and has as a consequence not left the topology of its phase 
curves invariant. The same is true of the regional linearization method: (10.7) has 
only open curves for phase trajectories because out generators are insufficiently 
accurate to ensure that the approximate linearization carried out by T is a sufficiently 
good approximation to an invariance transformation. The open phase trajectories of 
(10.7) are then of course mapped into open phase trajectories by the transfomlation 
inverse to (10.8)because the transformation is a diffeomorphism. These topological 
errors could of course have been avoided had we linearized equations (5.2) in the 
way we did in section 5, and then translated the resulting equations to the new origin. 
This, however, makes it more difficult to obtain a close approximation to the phase 
curves at points far from the singular point at the origin. The method illustrated 
hefe is designed for that purpose. 

1 1. Higher  a p p r o x i m a t i o n s  to  gene ra to r s  

All our considerations so far have involved generators obtained by quadratic 
approximation. In this secüon, we will determine higher approximations to the 
generators and investigate the ways in which their use modifies results obtained 
from the quadraüc approximation. It will be remembered that the quadratic approxi- 
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mation to the U was obtained by solving eqs. (2.8a), (2.8b) together with the approxi- 
mation to (2.8c) obtained by setting U (2) to zero. We begin this section by relaxing 
the approximation that U (2) = 0 in (2.8c), and thereby solve the full set of equations 
implied by (2.8a, b, c). Inspecting (2.8), one sees that this completely determines 
the k terms in the U. Thus, the approximation we äre about to discuss fixes the g's 
and therefore for each U completely determines the transformation of the kinetic 
coefficients carried out by exp(aU). 

We start with an example and determine the modifications to the U~22 of 
table 2.1 of I that one obtains by removing the approximation U (2) = 0 when solving 
(2.Sa,b,c) of I. Equations (2.Sa,b) are not altered and one obtains frorn (2.8c) the six 
determining equations 

( g l l l ) - -  3 k l o h l l l l  - k 2 o h l l 1 2  = 0 

(g112 - 2k21) - 2klohlllZ - 2 k 2 o h l m  = 0 

(glz2 + kll - 2 k 2 2 ) -  k m h m 2  - 3k2ohmz  = 0 

(g211) - 3 k l o h 2 m  - k2oh2112 = 0 
(11.1) 

(g212)- 2kloh2112 - 2k2oh2122 = 0 

(g222 + k z 1 ) -  kloh21z2 - 3kzoh222z = O. 

On setting U (2) = 0 ,  the terms in parentheses remain and are the terms used previously 
to determine the U (-~) + U (°) + U (1) approximation to U. To obtain corrections 
to the resulting U m ,  one transfers these terms to the right-hand side of the equations 
and solves the resulting inhomogenous equations for the hiikt. The three equations 
for the hl jk l  and the three for the h2jkl are independentand each set is of rank 3 
if neither klo nor k2o vanish. Consider this case first. Solving the equations, one 
finds that they yield the following U: 

= u,22 + ( - K 3 x ~  + 3K2x~x2 - 3Kx ,  x~ +x~)  

X (el 3[3xl + e2 3/3x2), (1 1.2) 

where K = k2o/klo. Here, el and e2 are arbitrary parameters. One may in fact re- 
express (1 1.2) in the form 

U = U m  + el Ue, + e2 Ue~ (11.3) 
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As U m  is reclaimed on setting et, e2 to zero, U m  is itself a solution of the full 
set of equations I¢~ = 0. Thus, U m  is one degree more accurate than might have 
been expected. It will also be noted that the operators U e and U e act only on 
xl,  x2 and not upon the rate coefficients k. They are consèquently of  no interest 
in the context of  this paper. 

Next, consider the case kxo = k20 = 0. It is evident that each of the hipcl 
may then be chosen arbitrarily, so that one obtains an eight-parameter family of 
generators: 

U = U:22 + E hük l x] x k x l ö { ~ x i . (11.4) 

As in the previous case, the additional generators have no effect upon the rate co- 
efficients. 

Next, consider the situation where k2o vanishes, while k,o does not. Then 
one finds 

U = Ux22 + h1222 X 3 O/~X1 "1" h2222 x~ 3[3x2 . (1 1.5) 

When klo vanishes and k2o does not, one finds 

U = U122 -I- hlii1231 a/0Xl -I- h2111 Xp a/0X 2 . (11.6) 

In both cases, the h's are arbitrary and are coefficients of new generators that have 
no effect on the rate constants. In short, in order to obtain corrections to U m  it is 
necessary to move on to eq. (2.8d) of  I. 

This discussion of  "corrections" to Um applies to the other Ui]k in a parallel 
manner. The terms in (1 1.1) not contained in parentheses are the same in each case. 
The terms contained in parentheses are different in each case, but vanish in the original 
approximation. Thus, the generators listed in table 2.1 of I and the finite transforma- 
tions in table 2.2 of  I are all unchanged when eqs. (2.8a, b, c) of I are solved in toto. 

We next investigate the modifications of the U (2) that are required in order 
to satisfy (2.8d) of I. Equation (2.8d) may be written in matrix form as 

0 = G(2)H (2) + G(1)H (3) + G(°)H (4) = (GH) (4). (11.7) 

Here, G (n) is a matrix whose entries contain g(n) coefficients and H (n) is a vector 
o fh  (n) coefficients. The product (GH) (4) is of the form 

i01 ~0~~~~+11 
+ + :  ~~o+ + ,+++ ~o+,+++~ ~,+ 

Lt°+ to+ E+~+>~ Lt+~+>+j 
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From this, it is evident that on insertion into (11 .8)of  the h (2) and h (3) calculated 
by setting to zero the lower order w, one obtains a set of equations which determine 
the h (4) without modifying the lower order h (n). It  follows that the functions g(k)  in 
the generators obtained by solving (2.8a, b, c) o f  1 are exact. Thus, the invariant 
functions listed in table 8.] are exact. 

If one wishes to use transformations whose generators are linear combinations 
of those listed in table 2.1 of I, it becomes necessary to integrate eqs. (8.3) to deter- 
mine the corresponding invariant functions of the rate constants. These also will 
remain unaltered by all further improvements in the generators obtained by solving 
eqs. (2.8) of I in higher orders of approximation. 

An interesting property of the higher order approximations to the U's is 
worth noting. Even when a set of Ur in table 2.1 of I dose under commutation, it 
will not generally be true thät the corresponding set of improved generators will 
close under commutation. The commutators will generally contain terms of higher 
degree in x than the original generators. However, one may write 

b~, = gU,. + xu,., (11.9) 

where kg~ acts only on the kinetic coefficients and x u  acts only on the species 
concentrations. If the kU,. close under commutation, then the theorem of ref. [1] 
of I establishes that the U r will obey the same commutation relations as the kU r when 
they satisfy (2.8) of I exactly. Any failure of the approximate generators to obey 
these commutation relations is thus an artifact of approximation. 

Finally, we consider the general problem of obtaining arbitrarily high-order 
approximations to a generator U. Referring back to eqs. (2.8) of I, onë sees that 
the contribution to U of order p + 1 in x is obtained from the contributions of 
order p and p - 1 by solving linear equations exactly analogous to those depicted 
in (11.8) above. As in the case of the example of eqs. (11.1), one obtains solutions 
corresponding to generators with g vanishing as well as the desired improvement 
U(p+ 1) to the U of interest. This U (p+ 1) can then be used together with U (p) to 
obtain U (p + 2) in an analogous fashion. 

12. Conc lus ions  

This paper has utilized basic methods of the theory of Lie groups admitted 
by ordinary differential equations to determine large-scale global mappings connecting 
systems with differing rate constants. 

As we have illustrated, a key consequence of such large changes is their effect 
upon the topology of the phase trajectories of a system. As we knew that time- 
independent transformations of species concentrations and rate constants could 
preserve the topology of phase portraits if the transformations were sufficienfly 
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restficted, in this paper we investigated time-independent transformations whose 
generators are analyfic in the rate constants and approximated as analytic in the 
concentrafions. This is more than sufficient to force the transformations to be local 
diffeomorphisms of the enfire system space - the space of all real values of the con- 
centrations and rate constants. By also restficting the range of the group parameter 
where necessary, we have ensured that all finite transformations are diffeomorphisms 
of the space of real x, k. In addition, because the generators are so chosen that the 
space of rate constants is an invariant subspace, the topology of trajectofies in concen- 
tration space is preserved by the transformations. This has allowed us to determine 
the one-parameter groups of changes in rate constants for which the phase trajectofies 
are qualitafively insensitive in a weil defined topological sense. As we have been able 
to exacfly determine the changes in rate constants that preserve the topology of these 
phase portraits, it is possible to give a quantitative treatment of these changes in rate 
constants without further elaboration. 

Because the determining equations for the group generators could be solved 
algofithmically, we have been able to systematically determine all one-parameter 
transformation groups satisfying the imposed conditions. 

We are not the first to realize the importance of topological considerations 
in chemical kinetics: we particularly call attention to the work of Bruce Clark and 
bis coworkers [10], and to the work of Martin Feinberg [11]. 

Our work differs from that of these and other investigators because we have 
taken advantage of the fact that the process of determining the Lie generators of an 
invafiance transformafion can be made algofithmic. This now makes it possible to 
develop a systemafic and general treatment of the consequences of large changes 
in rate constants upon the behaviour of kinetic systems. 

We have not attempted to exacfly determine the phase portraits themselves. 
There is a fundamental reason for this. Autonomous ordinary differential equations 
whose fight-hand sides are analytic functions can have "chaotic" solutions. This has 
the consequence that the coefficients h(x) in the generators U of th is paper need not 
be analytic functions; they may, for example, be only infinitely differentiable func- 
tions. In pracfice, one may approximate infinitely differentiable functions by a seiles 
of  analytic funcfions, but it would be a mistake to suppose that this approximation 
was of the same value in all regions of the phase space. Expefience suggests that 
this, and related, mathematical complexity seldom expresses itself in the chaotic 
evolution of the reacting systems of common occurrence in the chemical laboratory 
and chemical industry. It may be of more common occurrence in biochemical systems. 
Whenever the evolution of a kinetic system is nonchaotic, the transformations intro- 
duced in this paper allow one to both qualitatively and quanfitatively investigate 
the sensitivity of phase trajectofies to gross changes in rate constants, and to deterrnine 
those changes in rate constants which leave some quantitative property unchanged [12]. 
If the evolution is chaotic, further invesfigations are necessary. 



296 CE. Wulfman, H. Rabitz, Global sensitivity analysis: II 

In the interest of simplicity, we have also side-stepped three problems mathe- 
matically much less troublesome than that of chaotic evolution. We have not required 
that the group parameters a be so restricted so as to ensure that no "real world" concen- 
tration becomes negative. We have also not required that mass conservation be preserved 
when T(a) acts on a kinetic system. There are no fundamental problems involved 
hefe; it is not difficult to impose the requirements in any particular case - the dif- 
ficulty is simply that the variety of cases is immense and diverse. Finally, we have 
not dealt with problems that arise when many-parameter Lie groups, whose para- 
meters are only restricted in range by the structural properties of the group, have 
further restrictions imposed by the requirement that the group action on a space 
of real variables yields only real variables. In our case, the difficulty appears when 
abstractly allowed parameter values carry points with finite coordinates to cooordinates 
whose value is _+o. A considerable simplification occurs if one proceeds as is done 
in the theory of projective transformations; this, however, changes the topology of 
the space of x , k  and introduces conceptual elaborations that we consider to be 
inappropriate in an introductory work such as this. 

A variety of applications can be envisioned for the time-independent trans- 
fomlations of this paper. Because so much of the analysis involves only linear algebra, 
the methods are applicable to systems involving many chemical species. Further 
applications to the linearization of kinetics and to lumping and control problems 
appear to hold particular promise. The methods we have introduced for determining 
the subspace of x, k c0ntaining phase space trajectories of a fixed topology are 
methods that are systematic and apply directly to systems involving an arbitrary 
number of reactants: they may be used to obtain a greal deal of qualitative informa- 
tion about these systems. The use of the methods to obtain regional analytic approxi- 
mations to solutions of nonlinear kinectic equations also appear promising. 

We are currently extending Lie methods to reactions involving diffusion [13]. 
It is known that reaction-diffusion equations are invariant under ä much larger class 
of transformations than those considered herein and in I; in the general case, it will 
be necessary to allow transformations that depend upon partial derivatives of arbitrary 
order [14]. 
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